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GEOMETRICAL REPRESENTATION METHODS IN THE 
GRAPHICAL EXPRESSION OF THE TRIPLE INTEGRAL 
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Abstract: Generally, the shapes of surfaces can be defined by equations in an 
analytical way (cylinders, spheres, hyperboloids, etc.). In most cases, such an analytical 
approach can not be taken and the designer must create surfaces form simple elements, such as 
curves or points. The problem we approach comes from the needs of the industry (automotive, 
aeronautics, naval, etc.). When a prototype is conceived, a scale model needs to be fabricated in 
order to verify if the stylists’ designs can be realized. This shows a need to have the equations 
of different surfaces that define the object or, more accurately a good approximation of these 
surfaces. 
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1. INTRODUCTION  
 

The qualities expected form different mathematical models are: supporting 
(insuring) good physical elements through a good behavior of primary derivates 
(adjustment points for the checkered surface) and secondary derivates (the curvature of 
surfaces); the facility to modify the shape of surfaces starting from parameters with a 
physical meaning that is easy to understand and manipulate by non-mathematicians; 
the calculus facility, these methods being designed for an interactive use. 

 
2. A GEOMETRICAL APPROACH TO THE TRIPLE INTEGRAL 

 
We know that a double integral such as:  

 

∫∫
σ

dydxy,xf )(     (1) 
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is geometrically expressed by the volume V of the shape, limited by a part of the 
surface S, whose equation 
 

 )y,x(fz =       (2) 
 
is the projection σ of this part on the xOy coordinate plain and the cylindrical surface 
projected with generators, parallel to the Oz axis, of the Oxyz orthogonal coordinate 
system, to which all analyzed objects are reported. 

A physical approach to the double integral takes us to the notion of mass, 
distributed on the plain domain σ according to the law that is expressed by function (2). 
Analyzing the analogical mass distributed on the space domain V, in such a way, that 
its distribution law is expressed with the help of the function: 
 

 )zy,f(x,t =       (3) 
 
we normally get to the physical approach to the triple integral of the following type: 

 

      (4)  ∫∫∫
V

dzdydxz)y,f(x,

 
A geometrical approach to the type (4) integral can not be found in integral 

calculus books, and the cause is obviously the fact that function (3) itself includes four 
variables and in order to express its geometrical content we need to operate with the 
notions of the four-dimensional geometrical space, that are not widely spread yet. 

The function t = f(x, y, z) is expressed through a certain surface of the four-
dimensional space related to the orthogonal coordinate system Oxyzt. So, by expanding 
the geometrical approach for the double integral to the triple integral, we can conclude 
that the triple integral of type (4) is geometrically expressed by volume H of the hyper-
corps, limited by a part Ω of hyper-surface (3), by projecting this part on the hyper-
plain of xyz coordinates and through the cylindrical surface projected with the 
generators parallel to the Ot axis. 

There are known examples of representing on orthogonal and axonometric 
drawings the construction of hyper-surfaces. 

Based upon these facts we can conclude that using the methods of descriptive 
geometry in the four-dimensional space, we can eloquently express the geometrical 
substance of triple integration. 

 
3. THE GRAPHICAL EXPRESSION OF TRIPLE INTEGRATION 
    IN THE AXONOMETRIC DRAWING  

 
With the help of the calculus example for the mass of the corpus limited by the 

surface of the ellipsoid: 
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we show how the triple integration process can be suggestively represented in the 
axonometric drawing. 

We presume that the density in each point of the corpus is equal to the square 
of the distance from this point to the starting point of the coordinates. In such a case, 
the mass distribution law, according to the volume of the given corpus, will be 
expressed by the function. 
 

222 zyxt ++=     (6) 
 

And the mass m of the given corpus by the integral 
 

( )∫∫∫ ++=
V

dzdydxzyxm 222     (7) 

 
Fig. 1. Representing the geometrical object that expresses the  

integral in diametric oblique projection 
 

Figure 1, in the dimetric oblique projection shows the geometrical object that 
expresses integral (7) as a whole. On this drawing V is the volume of the ellipsoid (5) 
which is the orthogonal projection of the hyper-function (6) on the hyper-plain of xyz 
coordinates, Ω2 is the projection of the hyper-surface (6) on the hyper-plain of xyz 
coordinates on a direction parallel to the zt coordinate plain, chosen in such a way that 
the positive direction of the Ot axis is projected on the negative direction of the Oz 
axis. 
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Integral (7) can be represented as follows: 
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or, having in mind the actual values of the integration limits in function (3), as 
represented below 
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If integrating after y the variables x and z remain constant and the interior 

integral takes the following values 
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The geometrical essence of such an integral is expressed by the surface 

represented in figure 2.a.  
 

 
Fig. 2.a. Representing the surface  

 
Integral (10) is described as follows:  
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If we note ( ) dzcc/a =− 22 we get: 
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If integrating after x variable z remains constant and the interior integral takes 

the following values: 
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From a geometrical point of view the result of such integration is expressed by 

the volume represented in figure 2.b, where the element of this volume is reduced 
(brought) to the surface represented earlier in figure 2.a. In the final stage of integration 
we substitute the value of the internal integral in expression (12) and we integrate after 
z. 

 
Fig. 2.b. The integration result expressed by the represented volume 



Stark, A., Zoller, I. 212 
 

( ) ( ) ( )2224224222
4 15

424
4

cbacbadzzzcccba
c

ba c

c

++
π

=+−⋅++
π

∫
−

        (14) 

 
The process of such integration is geometrically expressed by the summing of 

volumes, out of which one is indicated in figure 2.b. Following this summing, a hyper-
volume is formed, whose element is shown in figure 3. This drawing also shows the 
elements presented before in figure 2. 
 

 
Fig. 3. Representing the hypervolume 

 

The expression )cbπabc(a 222

15
4

++ is the value of the triple integral (7). 

 
2. CONCLUSION 
 
This example shows that, by using four-dimensional space descriptive 

geometry methods, we can eloquently express the essence of the triple integral. 
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