ON SOME MODELS OF LINEAR OPTIMIZATION WITH APPLICATIONS

CĂTĂLIN-ILIE MITRAN

Abstract

The purpose of this paper is to present an economic model of profit maximization in case of a factory that has a number of equipments that must produce a certain number of workpieces in terms of time and profit specified. Using two mathematical models for solving linear optimization problems will be solved a particular case of the mentioned economic problem. One of the method is based on graphics resolution and the other on the simplex algorithm. First of all will be presented the data of the problem with a particular case for solving and after these a short presentation of the two above mentioned methods followed by the itself solve of the problem using these methods and the results analysis.

KEY WORDS: linear optimization problem, simplex algorithm, graphics method, polygon of the solutions.

JEL CLASSIFICATION: C61.

1. INTRODUCTION

A company has a number of m production equipments $M_{1}, M_{2}, \ldots, M_{m}$ which must process n different types of workpieces $P_{1}, P_{2}, \ldots, P_{n}$. The time expressed in minutes required during processing a workpiece is different depending on the type of equipment and the type of workpiece. We know the next data:
$t_{i j}$ - the $P_{j}, j=1, \ldots, n$ workpiece processing time required by the equipment $M_{i}, i=$ $1, \ldots, m$ for one month;
c_{j} - the capacity of processing of the equipment $M_{i}, i=1, \ldots, m$ for one month;
b_{j} - the benefit expressed in monetary units obtained from the $P_{j}, j=1, \ldots n$ workpiece;
x_{j} - the number of workpieces that have to be processed for a month.
The problem data are given by the following table:

P_{i}	P_{1}	P_{2}	\ldots	P_{n}	c_{i}
M_{1}	t_{11}	t_{12}	\ldots	$t_{1 n}$	c_{1}
M_{2}	t_{21}	t_{22}	\ldots	$t_{2 n}$	c_{2}
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
M_{m}	$t_{m 1}$	$t_{m 2}$	\ldots	$t_{m 2}$	c_{m}
b_{j}	b_{1}	b_{2}	\ldots	b_{n}	

We can express and solve the model by using the next linear optimization problem:

$$
\begin{align*}
& \max \left(b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{n} x_{n}\right) \\
& \left\{\begin{array}{c}
t_{11} x_{1}+t_{12} x_{2}+\cdots+t_{1 n} x_{n} \leq c_{1} \\
t_{12} x_{2}+t_{22} x_{2}+\cdots+t_{2 n} x_{n} \leq c_{2} \\
\cdots \\
t_{m 1} x_{1}+t_{m 2} x_{2}+\cdots+t_{m n} x_{n} \leq c_{m} \\
x_{1}, x_{2}, \cdots, x_{n} \geq 0
\end{array}\right. \tag{1}
\end{align*}
$$

Application A company has three types of equipment denoted by M_{1}, M_{2}, M_{3} having to process two types of workpieces denoted by P_{1} and P_{2}. Using the data from the table:

M_{j}	P_{1}	P_{2}	c_{i}
M_{1}	11	9	9900
M_{2}	7	12	8400
M_{3}	6	16	9600
b_{j}	90	100	

we must find the benefit which can be obtained.
Definition 1 We name a linear optimization problem in two variables the next problem:

$$
\begin{gather*}
\max (\min)\left(C_{1} x+C_{2} y\right) \\
\left\{\begin{array}{c}
a_{11} x+a_{12} y \leq(\geq) b_{1} \\
a_{21} x+a_{22} y \leq(\geq) b_{2} \\
\ldots \\
a_{n 1} x+a_{n 2} y \leq(\geq) b_{n} \\
x, y \geq 0
\end{array}\right. \tag{3}
\end{gather*}
$$

where $C_{1} x+C_{2} y$ are named the eficiency function and the system of equalities

$$
\left\{\begin{array}{c}
a_{11} x+a_{12} y \leq(\geq) b_{1} \\
a_{21} x+a_{22} y \leq(\geq) b_{2} \\
\ldots \\
a_{n 1} x+a_{n 2} y \leq(\geq) b_{n} \\
x, y \geq 0
\end{array}\right.
$$

are named the restriction of the linear optimization problem.
In the standard bidimensional $x 0 y$ plan of coordinates the restrictions $a_{11} x+a_{12} y \leq(\geq) b_{1}, a_{21} x+a_{22} y \leq(\geq) b_{2}, \ldots, a_{n 1} x+a_{n 2} y \leq(\geq) b_{n}$ are halfplanes and the intersection of all half-planes represents a convex polygon. The maximum or the minimum of problem (1) will be obtained in one of the in the vertices of the polygon.

The polygon of the solutions

Definition 2 We name a standard linear optimization problem the next problem:

$$
\begin{align*}
& \max (\min)\left(\mathrm{C}_{1} \mathrm{x}_{1}+\mathrm{C}_{2} \mathrm{x}_{2}+\cdots+\mathrm{C}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right) \\
& \left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\
x_{1}, x_{2}, \ldots, x_{n} \geq 0(m<n)
\end{array}\right. \tag{4}
\end{align*}
$$

where $C_{1} x_{1}+C_{2} x_{2}+\cdots+C_{n} x_{n}$ are named the eficiency function and the system of equalities
$\left\{\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} n_{n}=b_{2} \\ \ldots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\ x_{1}, x_{2}, \ldots, x_{n} \geq 0(m<n)\end{array}\right.$
are named the restriction of the linear optimization problem.
The matrix
$A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots . & a_{2 n} \\ \ldots . . & \ldots \\ a_{m 1} & a_{m 2} & & a_{m n}\end{array}\right)$
are named the matrix of the restriction and we suppose that $\operatorname{rank}(A)=m$. It follows that it exists a matrix B called base so that
$B=\left(\begin{array}{cccc}a_{1 i_{1}} & a_{1 i_{2}} & \ldots & a_{1 i_{m}} \\ a_{2 i_{1}} & a_{2 i_{2}} & \ldots & a_{2 i_{m}} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m i_{1}} & a_{m i_{2}} & \ldots & a_{m i_{m}}\end{array}\right)$
called base so that $\operatorname{det}(B) \neq 0$.
Solving the problem lies in the algorithm simplex. A table of this algorithm is of the form:

VB	VVB	x_{1}	x_{2}	\cdots	x_{n}
$x_{i_{1}}$	$B^{-1} b$	$B^{-1} a_{1}$	$B^{-1} a_{2}$	\cdots	$B^{-1} a_{n}$
$x_{i_{2}}$					
\ldots				\cdots	$Z_{n}-c_{n}$
$x_{i_{m}}$		Z	$Z_{1}-c_{1}$	$Z_{2}-c_{2}$	\cdots

where VB means the vectors of the base and VVB the values of the vectors of the base and the values Z, Z_{1}, \ldots, Z_{n} which are given by $Z=C_{B} B^{-1} b, Z_{1}=C_{B} B^{-1} a_{1}, \ldots$, $Z_{n}=C_{B} B^{-1} a_{n}$ have the next semnification:
Z - the variable for calculus of maximum or minimum of the problem;
Z_{1}, \ldots, Z_{n} - variables that gives us the stopping condition. In the case of the problem of maximum we will stop then all the variables Z_{1}, \ldots, Z_{n} will be positive and in the case of the of the problem of minimum we will stop then all the variables Z_{1}, \ldots, Z_{n} are negative.

In the case that the stopping condition is not verified we will build a new table taking care of the next:

1) If the problem ia a maximum one and between the variables Z_{1}, \ldots, Z_{n} are someones negative we will select the smallest of these values which is Z_{k} to suppose and we will got o 3);
2) If the problem is a minimum one and between the variables Z_{1}, \ldots, Z_{n} are someones positive we will select the biggest of these values which is Z_{k} to suppose and we will go to 3);
3) For the choosing of the pivot element we will calculate the minimum of the positive reports that can be formed using elements from the called VVB column at the numerator and the corresponding column of the variable x_{k}. Let's suppose that this minimum is obtained for the corresponding vector of the base $x_{l}, l \in$ $\left\{i_{1}, \ldots, i_{m}\right\}$;
4) The vectors belonging to the column denoted by VVB excepting x_{k} will still remain in the next table, the vector x_{k} will replace the vector x_{l}, the columns of the variables $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}$ excepting x_{l} will remain unchanged, the column of the vector x_{k} will be the old column of the variable x_{l}, the pivot line will be divided by the pivot element and the remaining elements will be calculate using the rectangle rule reported to the pivot element.
5) The rule of the rectangle of an reported to the pivot element is given by the next calculation rule:

$$
\begin{aligned}
& x_{\alpha k} \ldots \ldots x_{\alpha \beta} \\
& \ldots \\
& x_{l k} \ldots \ldots x_{l \beta} \\
& x_{\alpha \beta} \leftarrow x_{\alpha \beta}-\frac{x_{\alpha k} \cdot x_{l \beta}}{x_{l k}} .
\end{aligned}
$$

Taking care of (1) and (2) the mathematical problem is given by:

$$
\begin{gather*}
\max \left(90 x_{1}+100 x_{2}\right) \\
\left\{\begin{array}{c}
11 x_{1}+9 x_{2} \leq 9900 \\
7 x_{1}+12 x_{2} \leq 8400 \\
6 x_{1}+16 x_{2} \leq 9600 \\
x_{1}, x_{2} \geq 0
\end{array}\right. \tag{5}
\end{gather*}
$$

2. METHOD I (GRAPHICS METHOD)

In order to represent the three half-planes we have to represent first the associated lines. To represent these lines we have is enough to determine two points belonging to these lines. We will have:

$$
11 x_{1}+9 x_{2}=9900
$$

$x_{1}=0 \Rightarrow 9 x_{2}=9900 \Rightarrow x_{2}=1100$. Corresponding point $A(0,1100)$.
$x_{2}=0 \Rightarrow 11 x_{1}=9900 \Rightarrow x_{1}=900$. Corresponding point $B(900,0)$.
$7 x_{1}+12 x_{2}=8400$
$x_{1}=0 \Rightarrow 12 x_{2}=8400 \Rightarrow x_{2}=700$. Corresponding point $C(0,700)$.
$x_{2}=0 \Rightarrow 7 x_{1}=8400 \Rightarrow x_{1}=1200$. Corresponding point $D(1200,0)$.
$6 x_{1}+16 x_{2}=9600$
$x_{1}=0 \Rightarrow 16 x_{2}=9600 \Rightarrow x_{2}=600$. Corresponding point $E(0,600)$.
$x_{2}=0 \Rightarrow 6 x_{1}=9600 \Rightarrow x_{1}=1600$. Corresponding point $F(1600,0)$.
All the three half-planes are located below the associated lines and their intersection in the field $x \geq 0, y \geq 0$ is given by the polygon $E O B G H$. The maximum requested by the problem will be obtained in one of these vertices. So we have to calculate the values of function $f\left(x_{1}, x_{2}\right)=90 x_{1}+100 x_{2}$ in all these vertices and their to choose the maximum value of them.

We have for the coordinates of G to solve the system: $\left\{\begin{array}{l}11 x_{1}+9 x_{2}=9900 \\ 7 x_{1}+12 x_{2}=8400\end{array}\right.$. We get $G(626,08,334,78)$.

We have for the coordinates of H to solve the system: $\left\{\begin{array}{l}7 x_{1}+12 x_{2}=8400 \\ 6 x_{1}+16 x_{2}=9600\end{array}\right.$. We get $H(480,420)$.
We will calculate the value of the function $f\left(x_{1}, x_{2}\right)=90 x_{1}+100 x_{2}$ in every point $E(0,600), O(0,0), B(900,0), G(626,08,334,78)$ and $H(480,420)$. We get:
$f(0,600)=60000$
$f(0,0)=0$
$f(900,0)=81000$
$f(626,08 ; 334,78)=89819,2$
$f(480,420)=85200$
We get $\max \left(90 x_{1}+100 x_{2}\right)=89819,2$ in $G(626,08,334,78)$. But if we take care that x_{1} and x_{2} which represent a type of workpieces must be integers we chose for x_{1} and x_{2} the values $x_{1}=626$ and $x_{2}=334$. In this case the maximum requested by the problem will be $90 \cdot 626+100 \cdot 334=89740$.

3. METHOD II (SIMPLEX ALGORITHM METHOD)

Starting from the initial problem by adding the supplimentars variables we get the equivalent problem:

$$
\begin{aligned}
& \max \left(90 x_{1}+100 x_{2}\right) \\
& \left\{\begin{array}{c}
11 x_{1}+9 x_{2}+x_{3}=9900 \\
7 x_{1}+12 x_{2}+x_{4}=8400 \\
6 x_{1}+16 x_{2}+x_{5}=9600 \\
x_{1}, x_{2}, \ldots, x_{5} \geq 0
\end{array}\right.
\end{aligned}
$$

In our case we have the next elements:

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
11 & 9 & 1 & 0 & 0 \\
7 & 12 & 0 & 1 & 0 \\
6 & 16 & 0 & 0 & 1
\end{array}\right), b=\left(\begin{array}{l}
9900 \\
8400 \\
9600
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& C=\left(\begin{array}{llll}
90 & 100 & 0 & 0
\end{array}\right), C_{B}=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The first table will be:
The first table will be:

VB	VVB	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{3}	9900	11	9	1	0	0
x_{4}	8400	7	12	0	1	0
x_{5}	9600	6	16	0	0	1
	0	-90	-100	0	0	0

Due to the fact that between the elements $z_{i}-c_{i}, i=1, \ldots, n$ we have negative values we will got o the next table:

\downarrow VB	VVB	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{3}	4500	$61 / 8$	0	1	0	$-9 / 16$
x_{4}	1200	$5 / 2$	0	0	1	$-3 / 4$
x_{2}	600	$3 / 8$	1	0	0	$1 / 16$
	0	$-105 / 2$	0	0	0	$25 / 4$

Also, we have the value $z_{1}-c_{1}<0$ and we have to got o the third table:

VB	VVB	x_{1}	x_{2}	x_{3}	χ_{4}	x_{5}
x_{3}	840	0	0	,	-61/20	69/40
x_{1}	480	1	0	0	$2 / 5$	-3/10
x_{2}	420	0	1	0	-3/20	7/40
	86200	0	0	0	21	-19/2

And again, due to the fact that $z_{5}-c_{5}<0$ we have to got o the fourth table:

VB	VVB	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{5}	486,95	0	0	$40 / 69$	$-121 / 69$	1
x_{1}	626,08	1	0	$4 / 23$	$-3 / 23$	0
x_{2}	334,78	0	1	$-7 / 69$	$11 / 69$	0
	89819,2	0	0	$308 / 69$	$2608 / 69$	0

Again we get the same result 89819,2 for maximum required by the problem for the values $x_{1}=626,08$ and $x_{2}=334,78$ and of course, taking care of that x_{1} and x_{2} must be integers and choosing for x_{1} and x_{2} the values $x_{1}=626$ and $x_{2}=334$ we get the value $90 \cdot 626+100 \cdot 334=89740$ for the maximum requested by the problem.

4. CONCLUSIONS

The results obtained, of course identical, by the two methods of linear optimization show us the importance and the power and the applicability of the mathematical methods in simulation and solving of some types of technical and economic problems. In our case, starting from some technical data, the mathematical models sole an concrete economic problem of determining a maximum profit.

REFERENCES:

[1]. Mihu, C.; Dăneț, T. (1982) Probleme pentru aplicarea matematicii în practică, Editura Didactică și Pedagogică, București
[2]. Mureșan, A.; Blaga, P. (1996) Matematici aplicate în economie, vol.I, II, Transilvania Press, Cluj-Napoca
[3]. Mitran, I.; Mitran, C.I. (2002) Matematici aplicate în economie, vol. I, II, Editrura Focus, Petroșani

